

JML906x 10-MHz, RRIO, CMOS Operational Amplifiers

Features

• Rail-to-rail input and output

Low input offset voltage: ±0.4 mVUnity-gain bandwidth: 10 MHz

Low broadband noise: 14 nV/√Hz
Low input bias current: ±1 pA

Low quiescent current: 740 μA(MAX)

Unity-gain stable

• Internal RFI and EMI filter

• Operational at supply voltages as low as 1.8 V

 Easier to stabilize with higher capacitive load due to resistive open-loop output impedance

Shutdown version:JML906xS

• Internal RFI and EMI filter

• Extended temperature range: -40°C to 125°C

•compatibility AECQ-100

Applications

E-bikes

· Smoke detectors

· HVAC: heating, ventilating, and air conditioning

• Refrigerators

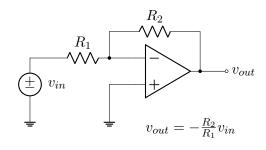
• Motor control: AC induction

Refrigerators

Wearable devices

Laptop computers

· Washing machines


· Sensor signal conditioning

Power modules

• Barcode scanners

Active filters

· Low-side current sensing

General Description

JML9061 (single),JML9062 (dual), andJML9064 (quad) are single-, dual-, and quad- low-voltage (1.8V to 5.5 V) operational amplifiers (op amps) with rail to rail input and output-swing capabilities. These devices are highly cost-effective solutions for applications where low-voltage operation, a small footprint, and high capacitive load drive are required. Although the capacitive load drive of theJML906x is 100 pF, the resistive open-loop output impedance makes stabilizing with higher capacitive loads simpler.

XMO906xS devices include a shutdown mode that allow the amplifiers to switch into standby mode with typical current consumption less than 1 μ A.

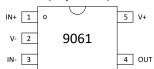
JML906xS family helps simplify system design, because the family is unity-gain stable, integrates the RFI and EMI rejection filter, and provides no phase reversal in overdrive condition.

Device Information¹²

PART NUMBER	PACKAGE	BODY SIZE(NOM)
JML9061	SOT-23 (5)	1.60 mm × 2.90 mm
310125001	SC70 (5)	1.25 mm × 2.00 mm
JML9061S	SOT-23 (6)	1.60 mm × 2.90 mm
	SOIC (8)	3.91 mm × 4.90 mm
JML9062	TSSOP (8)	3.00 mm × 4.40 mm
JIVIESOUZ	VSSOP (8)	3.00 mm × 3.00 mm
	WSON (8)	2.00 mm × 2.00 mm
JML9062S	VSSOP (10)	3.00 mm × 3.00 mm
JML9064	SOIC (14)	8.65 mm × 3.91 mm
310123004	TSSOP (14)	4.40 mm × 5.00 mm
JML9064S	WQFN (16)	3.00 mm × 3.00 mm

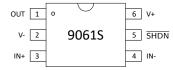
¹ For all available packages, see the orderable addendum at the end of the data sheet.

Revision 1.0


² Package is for preview only.

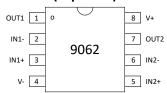
Pin Configuration and Functions

5-Pin SOT-23 (Top View)


5-Pin SC70 (Top View)

Pin Functions:9061

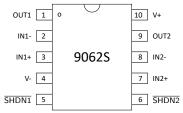
	PIN		I/O	DESCRIPTION	
NAME	SOT-23	SC70	1,0	DESCRIPTION	
IN+	3	1	I Noninverting input		
IN-	4	3	I Inverting input		
OUT	1	4	0	Out	
V+	5	5	_	Positive (highest) power supply	
V-	2	2	_	Negative (low) supply or ground (for single-supply operation)	


6-Pin SOT-23 (Top View)

Pin Functions:9061S

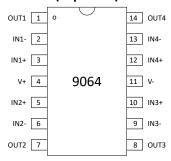
PIN		I/O	DESCRIPTION	
NAME	NO.	1,0	DESCRIPTION	
IN+	3	I	Noninverting input	
IN-	4	I Inverting input		
OUT	1	0	Out	
SHDN	5	I	Shutdown: low = amp disabled, high = amp enabled. See Shutdown Function section for more information	
V+	5	_	Positive (highest) power supply	
V-	2	_	Negative (low) supply or ground (for single-supply operation)	

8-Pin SOIC, VSSOP, TSSOP (Top View)


8-Pin WSON With Exposed Thermal Pad (Top View)

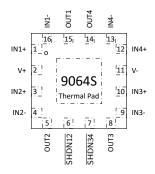
Pin Functions: Pin Functions:9062

PIN		I/O	DESCRIPTION	
NAME	NO.	1,0		
IN1-	2	I	Inverting input, channel 1	
IN1+	3	I	Noninverting input, channel 1	
IN2-	6	I	Inverting input, channel 2	
IN2+	5	I	Noninverting input, channel 2	
OUT1	1	0	Output, channel 1	
OUT2	7	0	Output, channel 2	
V+	8	_	Positive (highest) power supply	
V-	4	_	Negative (low) supply or ground (for single-supply operation)	


10-Pin VSSOP (Top View)

Pin Functions: Pin Functions:9062S

PIN		I/O	DESCRIPTION
NAME	NO.	1,0	DESCRIPTION
IN1-	2	I	Inverting input, channel 1
IN1+	3	I	Noninverting input, channel 1
IN2-	8	I	Inverting input, channel 2
IN2+	7	I Noninverting input, channel 2	
OUT1	1	0	Output, channel 1
OUT2	9	0	Output, channel 2
SHDN1	5	I	Shutdown: low = amp disabled, high = amp enabled.Channel 1. See Shutdown Function section for more information
SHDN2	6	I	Shutdown: low = amp disabled, high = amp enabled.Channel 2. See Shutdown Function section for more information
V+	10	_	Positive (highest) power supply
V-	4	_	Negative (low) supply or ground (for single-supply operation)


14-Pin SOIC, TSSOP (Top View)

Pin Functions: Pin Functions:9064

	PIN	I/O	DESCRIPTION
NAME	NO.	1/0	DESCRIPTION
IN1-	2	ı	Inverting input, channel 1
IN1+	3	I	Noninverting input, channel 1
IN2-	6	ı	Inverting input, channel 2
IN2+	5	ı	Noninverting input, channel 2
IN3-	9	ı	Inverting input, channel 3
IN3+	10	ı	Noninverting input, channel 3
IN4-	13	ı	Inverting input, channel 4
IN4+	12	ı	Noninverting input, channel 4
OUT1	1	0	Output, channel 1
OUT2	7	0	Output, channel 2
OUT3	8	0	Output, channel 3
OUT4	14	0	Output, channel 4
V+	4	_	Positive (highest) power supply
V-	11	_	Negative (low) supply or ground (for single-supply operation)

16-Pin WQFN With Exposed Thermal Pad (Top View)

Pin Functions: Pin Functions:9064S

	PIN	1/0	DESCRIPTION
NAME	NO.	I/O	DESCRIPTION
IN1-	16	1	Inverting input, channel 1
IN1+	1	1	Noninverting input, channel 1
IN2-	4	1	Inverting input, channel 2
IN2+	3	1	Noninverting input, channel 2
IN3-	9	1	Inverting input, channel 3
IN3+	10	1	Noninverting input, channel 3
IN4-	13	1	Inverting input, channel 4
IN4+	12	1	Noninverting input, channel 4
OUT1	15	0	Output, channel 1
OUT2	5	0	Output, channel 2
OUT3	8	0	Output, channel 3
OUT4	14	0	Output, channel 4
SHDN12	5	ı	Shutdown: low = amp disabled, high = amp enabled.Channel 1,2. See Shutdown Function section for more information
SHDN34	7	ı	Shutdown: low = amp disabled, high = amp enabled.Channel 3,4. See Shutdown Function section for more information
V+	2	_	Positive (highest) power supply
V-	11	_	Negative (low) supply or ground (for single-supply operation)

Specifications

Absolute Maximum Ratings

Over operating ambient temperature (unless otherwise noted)¹

			MIN	MAX	UNIT
Supply voltage [(V+)	- (V-)]		0	6	V
	Voltage	Common-mode	(V-) - 0.5	(V+) + 0.5	V
Signal input pins	Voitage	Differential		(V+) - (V-) + 0.2	V
	Current ²	·	-1	10	mA
Output short-circuit ³			Conti	nuous	mA
	Specified, T _A		-40	125	
Temperature Junction, T _J	Junction, T _J			150	°C
	Storage, T _{stg}		-65	150	

¹ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

ESD Ratings

		VALUE	UNIT
9061 PACKAGES			
V _{ESD} Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ¹	±2500	V
VESD Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ¹		
ALL OTHER PACKAGES			
V Flootrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ¹		V
V _{ESD} Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ¹	±1500	V

 $^{^{\,1}\,}$ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process

Recommended Operating Conditions

Over operating ambient temperature (unless otherwise noted)

		MIN	MAX	UNIT
Vs	Supply voltage $(V_S = [V+] - [V-])$	1.8	5.5	V
VI	Input voltage range	(V-) - 0.1	(V+) + 0.1	V
Vo	Output voltage range	V-	V+	V
V _{SHDN_IH}	High level input voltage at shutdown pin (amplifier enabled)	1.2	V+	V
V _{SHDN_IL}	Low level input voltage at shutdown pin (amplifier disabled)	V-	0.2	V
T _A	Specified temperature	-40	125	°C

² Input pins are diode-clamped to the power-supply rails. Current limit input signals that can swing more than 0.5 V beyond the supply rails to 10 mA or less.

 $^{^{\}rm 3}\,$ Short-circuit to ground, one amplifier per package.

 $^{^{2}\,}$ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Electrical Characteristics

For V_S (Total Supply Voltage) = (V+) – (V–) = 1.8V to 5.5V at T_A = 25°C, R_L = 10k Ω connected to V_S / 2, V_{CM} = V_S / 2, and V_{OUT} = V_S / 2 (unless otherwise noted)

PARAME	TER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFFSET '	VOLTAGE					
V _{OS}	input offset voltage	V _{os} =5V		±0.4	±1.6	mV
VOS	input onset voitage	V _S = 5 V, T _A = -40°C to 125°C			±1.8	IIIV
dV _{os} /dT	Drift	$V_S = 5 \text{ V}, T_A = -40^{\circ}\text{C to } 125^{\circ}\text{C}$		±0.5		μV/°C
PSRR	Power-supply rejection ratio	$V_S = 1.8 \text{ V} - 5.5 \text{ V}, V_{CM} = (V-)$		±7	±100	μV/V
	Channel separation, DC	At DC		134	140	dB
INPUT V	OLTAGE RANGE					
V _{CM}	Common-mode voltage range	VS = 1.8 V to 5.5 V	(V-) - 0.1		(V+) + 0.1	V
		$V_S = 5.5 \text{ V, (V-)} - 0.1 \text{ V} < V_{CM} < (V+) - 1.5 \text{ V, } T_A = -40^{\circ}\text{C to } 125^{\circ}\text{C}$	86	104		
CMDD		V _S = 5.5 V, - 0.1 V < V _{CM} < 5.6 V, T _A = -40°C to 125°C	60	87		dB
CMRR	Common-mode rejection ratio	$V_S = 1.8 \text{ V, (V-)} - 0.1 \text{ V} < V_{CM} < (V+) - 1.5 \text{ V, } T_A = -40^{\circ}\text{C to } 125^{\circ}\text{C}$	88	108		-
		V _S = 1.8 V, -0.1 V < V _{CM} < 1.9 V, T _A = -40°C to 125°C		88		
INPUT B	IAS CURRENT					
I _B	Input bias current			±1		рА
I _{OS}	Input offset current			±0.3		рА
NOISE						
E _n	Input voltage noise (peak to peak)			5.7		μVpp
_	Innuitualte de desertos	VS = 5 V, f = 10 kHz		15		
e _n	Input voltage noise density	VS = 5 V, f = 1 kHz		20		nV/√Hz
i _n	Input current noise density	f= 1 kHz		4		fA/√Hz
INPUT C	APACITANCE					
C _{ID}	Differential			1.2		pF
C _{IC}	Common-mode			2.4		pF
OPEN-LO	OOP GAIN					ı
		V_S = 1.8 V, , (V–) + 0.04 V < V_O < (V+) – 0.04 V, R_L = 10k Ω	103	128		
۸	Open loop voltage gain	V_S = 5.5 V, , (V–) + 0.05 V < V_O < (V+) – 0.05 V, R_L = 10k Ω	111	135		- 10
A _{OL}	Open-loop voltage gain	V_S = 1.8 V, , (V–) + 0.06 V < V_O < (V+) – 0.06 V, R_L = 2k Ω		127		dB
		V_S = 5.5 V, , (V–) + 0.15 V < V_O < (V+) – 0.15 V, R_L = 2k Ω		130		

Electrical Characteristics (continued)

For V_S (Total Supply Voltage) = (V+) – (V–) = 1.8V to 5.5V at T_A = 25°C, R_L = 10k Ω connected to V_S / 2, V_{CM} = V_S / 2, and V_{OUT} = V_S / 2 (unless otherwise noted)

PARAME	ETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
FREQUE	NCY RESPONSE					
GBW	Gain bandwidth product	V _S = 5 V, G = +1		10		MHz
φ_{m}	Phase margin	V _S = 5 V, G = +1		64		0
SR	Slew rate	V _S = 5 V, G = +1		7		V/µs
t _S	Settling time	To 0.1%, V _S = 5 V, 2-V step , G = +1, C _L = 100 pF		0.5		μs
		To 0.01%, V _S = 5 V, 2-V step , G = +1, C _L = 100 pF		0.9		
t _{or}	Overload recovery time	$V_S = 5.5 \text{ V, } V_{IN}^* \text{ gain } > V_S$		0.6		μs
THD+N	Total harmonic distortion + noise ¹	$V_S = 5.5 \text{ V}, V_{CM} = 2.5 \text{ V}, V_O = 1$ $V_{RMS}, G = +1, f = 1 \text{ kHz}$		0.00047%		
ОИТРИТ	T					
Vo	Output swing from supply rails	$V_S = 5.5 \text{ V,R}_L = 10 \text{ k}\Omega$			6	mV
v _O	Output swing from supply rails	$V_{O} = 5.5 \text{ V,R}_{L} = 2 \text{ k}\Omega$			20	IIIV
I _{SC}	Short-circuit current	V _S = 5 V		±55		mA
Z _O	Open-loop output impedance	V _S = 5 V, f = 10 MHz		100		Ω
POWER	SUPPLY					
1.	Quiescent current per amplifier	V _S = 5.5 V,I _O = 0mA		554	710	uA
IQ	Quiescent current per amplifier	$V_S = 5.5 \text{ V,I}_O = 0\text{mA,T}_A = -40^{\circ}\text{C}$ to 125°C			740	- uA

 $^{^{1}}$ Third-order filter; bandwidth = 80 kHz at -3 dB.

Typical Characteristics

at T_A = 25°C, V_S = 5.5 V, R_L = 10 k Ω connected to V_S / 2, V_{CM} = V_S / 2, and V_{OUT} = V_S / 2 (unless otherwise noted)

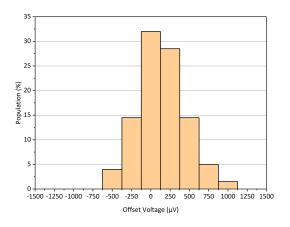


Figure 1: Offset Voltage Production Distribution

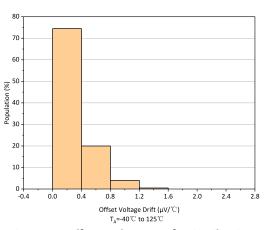


Figure 2: Offset Voltage Drift Distribution

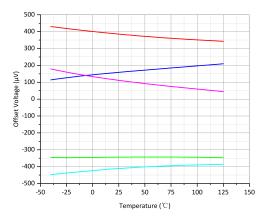


Figure 3: Offset Voltage vs Temperature

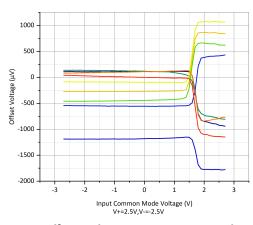


Figure 4: Offset Voltage vs Common-Mode Voltage

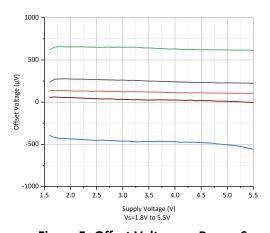


Figure 5: Offset Voltage vs Power Supply

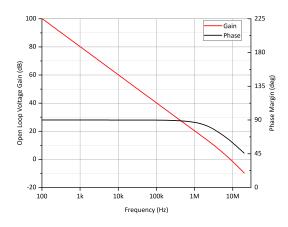


Figure 6: Open-Loop Gain and Phase vs Frequency

For V_S (Total Supply Voltage) = (V+) – (V–) = 1.8V to 5.5V at T_A = 25°C, R_L = 10k Ω connected to V_S / 2, V_{CM} = V_S / 2, and V_{OUT} = V_S / 2 (unless otherwise noted)

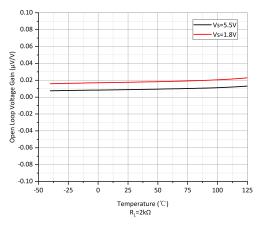


Figure 7: Open-Loop Gain vs Temperature

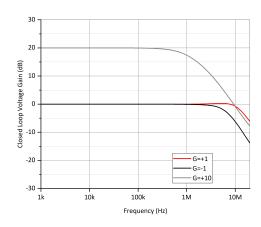


Figure 8: Closed-Loop Gain vs Frequency

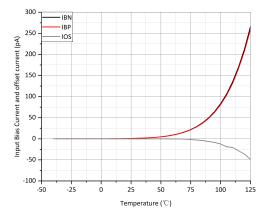


Figure 9: Input Bias Current vs Temperature

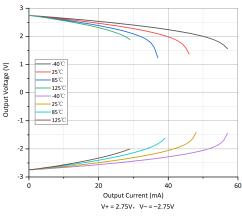


Figure 10: Output Voltage Swing vs Output Current

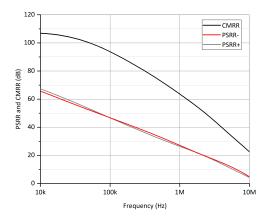


Figure 11: Offset CMRR and PSRR vs Frequency

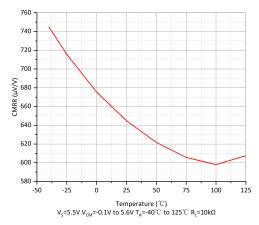


Figure 12: CMRR vs Temperature

For V_S (Total Supply Voltage) = (V+) – (V–) = 1.8V to 5.5V at T_A = 25°C, R_L = 10k Ω connected to V_S / 2, V_{CM} = V_S / 2, and V_{OUT} = V_S / 2 (unless otherwise noted)

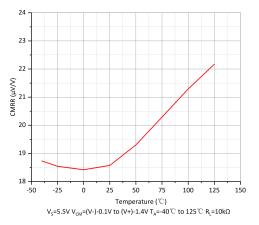


Figure 13: CMRR vs Temperature

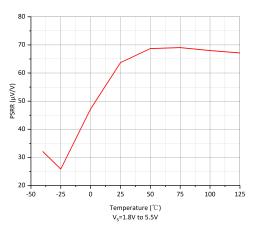


Figure 14: PSRR vs Temperature

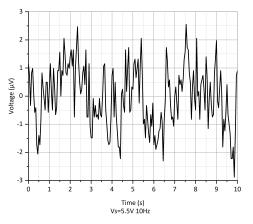


Figure 15: 0.1-Hz to 10-Hz Input Voltage Noise

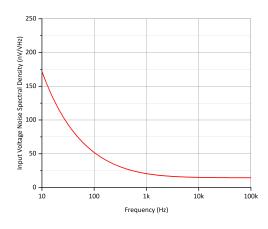


Figure 16: Input Voltage Noise Spectral Density vs Frequency

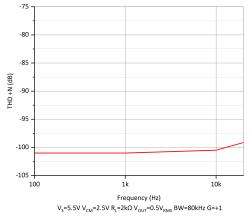


Figure 17: THD + N vs Frequency

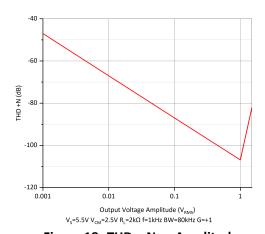


Figure 18: THD + N vs Amplitude

For V_S (Total Supply Voltage) = (V+) – (V–) = 1.8V to 5.5V at T_A = 25°C, R_L = 10k Ω connected to V_S / 2, V_{CM} = V_S / 2, and $V_{OUT} = V_S / 2$ (unless otherwise noted)

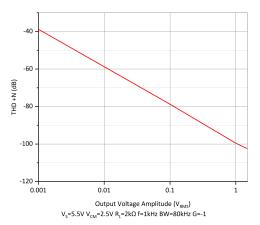


Figure 19: THD + N vs Amplitude

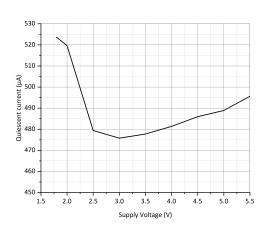


Figure 20: Quiescent Current vs Supply Voltage

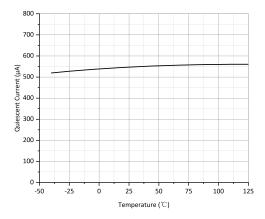


Figure 21: Quiescent Current vs Temperature

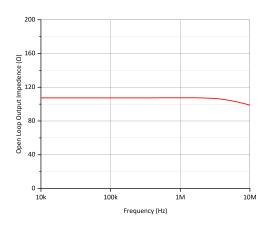


Figure 22: Open-Loop Output Impedance vs Frequency

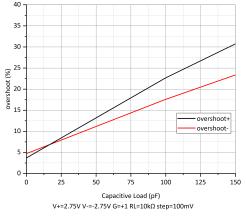


Figure 23: Small-Signal Overshoot vs Load Capacitance Figure 24: Small-Signal Overshoot vs Load Capacitance

For V_S (Total Supply Voltage) = (V+) – (V–) = 1.8V to 5.5V at T_A = 25°C, R_L = 10k Ω connected to V_S / 2, V_{CM} = V_S / 2, and V_{OUT} = V_S / 2 (unless otherwise noted)

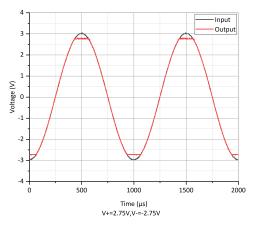


Figure 25: No Phase Reversal

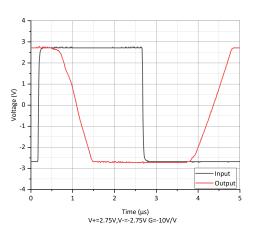


Figure 26: Overload Recovery

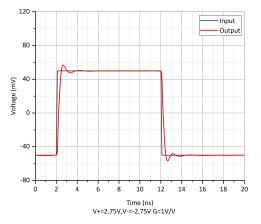


Figure 27: Small-Signal Step Response

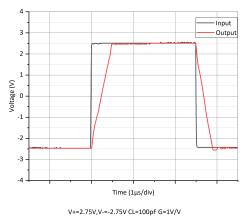


Figure 28: Large-Signal Step Response

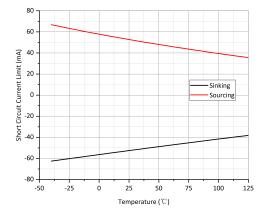


Figure 29: Short-Circuit Current vs Temperature

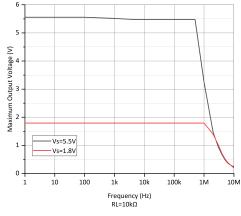


Figure 30: Maximum Output Voltage vs Frequency and Supply Voltage

For V_S (Total Supply Voltage) = (V+) – (V–) = 1.8V to 5.5V at T_A = 25°C, R_L = 10k Ω connected to V_S / 2, V_{CM} = V_S / 2, and V_{OUT} = V_S / 2 (unless otherwise noted)

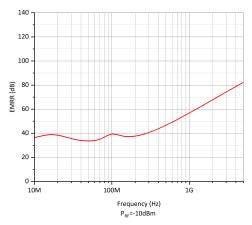


Figure 31: Electromagnetic Interference Rejection Ratio Referred to Noninverting Input (EMIRR+) vs Frequency

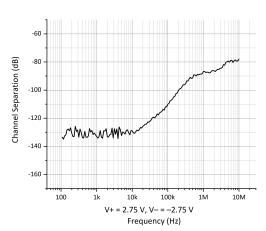


Figure 32: Channel Separation vs Frequency

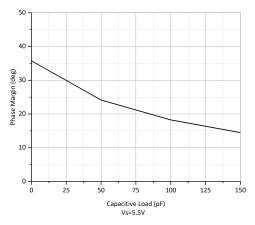


Figure 33: Phase Margin vs Capacitive Load

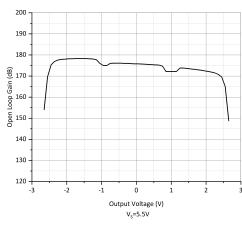


Figure 34: Open Loop Voltage Gain vs Output Voltage

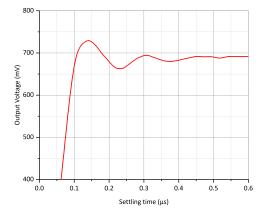


Figure 35: Large Signal Settling Time (Positive)

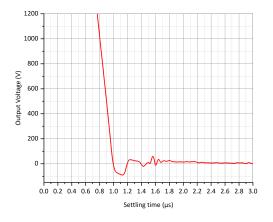
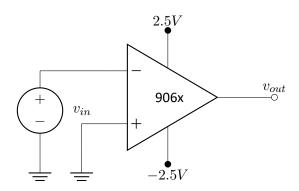


Figure 36: Large Signal Settling Time (Negative)

Typical Application

Comparators

Comparators are used to differentiate between two different signal levels. For example, a comparator can be used to differentiate between an overvoltage situation and normal operation. The XMO906x can be used as comparators by applying the two voltages being compared to each input without any feedback from output to inverting input. The XMO906x features a rail-to-rail input and output stage with an input common-mode range that exceeds the supply rails by 100 mV. The XMO906x is designed to prevent phase reversal over the entire input common-mode range. The propagation delay for the XMO906x used as a comparator is equal to the overload recovery time plus the slew rate. Overdrive voltages less than 100 mV result in longer propagation delays because the overload recovery time increases and the slew rate decreases.


Design Requirements

The design requirements for this design are:

Supply voltage: ±2.5 V
Input (VIN): -2.5 V to 2.5 V
Threshold voltage (VTH): 0 V

Detailed Design Procedure

The inverting comparator circuit applies the input voltage (VIN) to the inverting terminal of the op amp and ground to to the non-inverting terminal of the op amp as threshold voltage. The circuit is shown in following figure. When VIN is less then VTH, the output voltage transitions to the positive supply and equals the high-level output voltage. When VIN is greater than VTH, the output voltage transitions to the negative supply and equals the low-level output voltage.

Application Curves

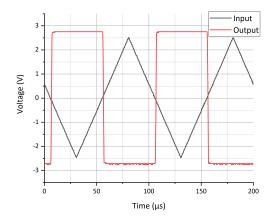


Figure 37: Comparator Response to Input Voltage (Propagation Delay Included)

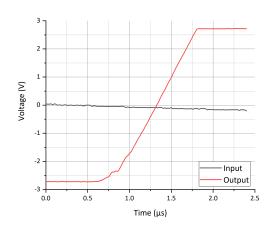


Figure 38: Rising Edge

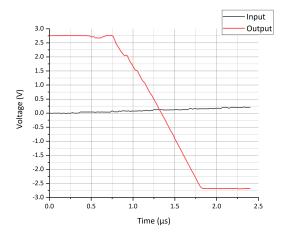
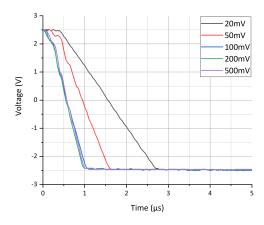
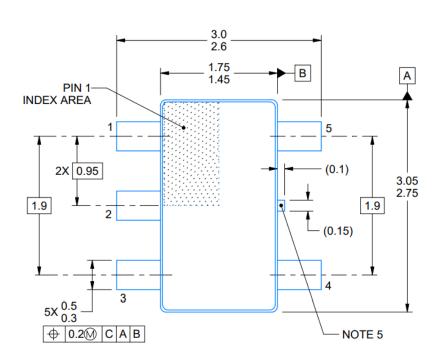
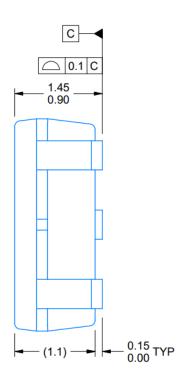
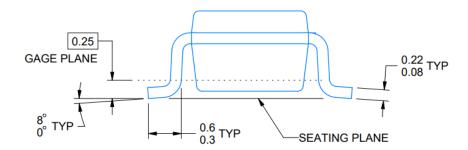


Figure 39: Falling Edge



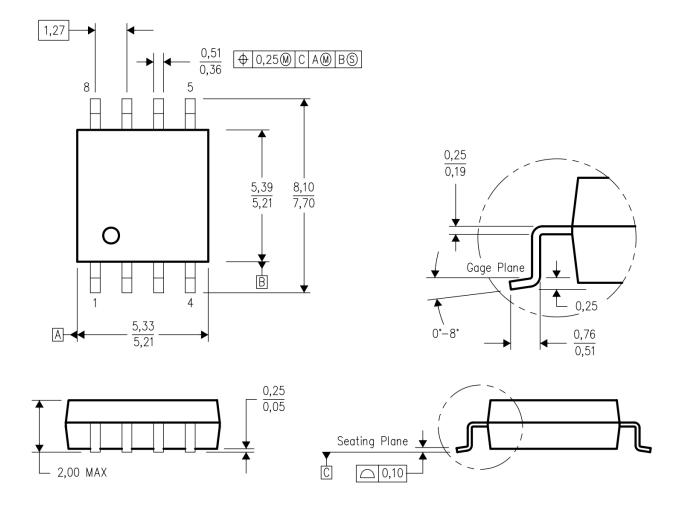

Figure 40: Falling Edge Propagation Delay vsInput
Overdrive Voltage

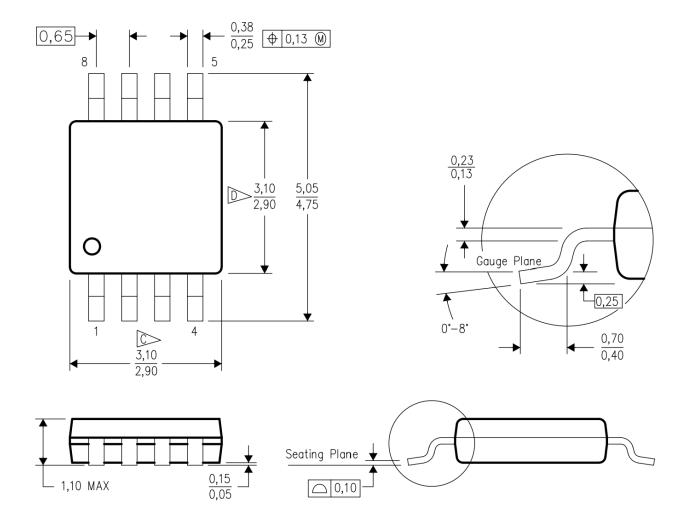

Packaging Infromation


Orderable Device	Status	Package Type	Pins	Package Qty	Eco Plan	Op Temp(°C)	Marking
JML9061IDBVR	ACTIVE	SOT-23	5	4000	RoHS Green	-40 to 125	15
JML9062IDGKR	ACTIVE	MSOP	8	4000	RoHS Green	-40 to 125	2M
JML9062IDR	ACTIVE	SOP	8	4000	RoHS Green	-40 to 125	25
JML9064IDR	ACTIVE	SOP	14	2500	RoHS Green	-40 to 125	45
JML9064IPWR	ACTIVE	TSSOP	14	2500	RoHS Green	-40 to 125	4T

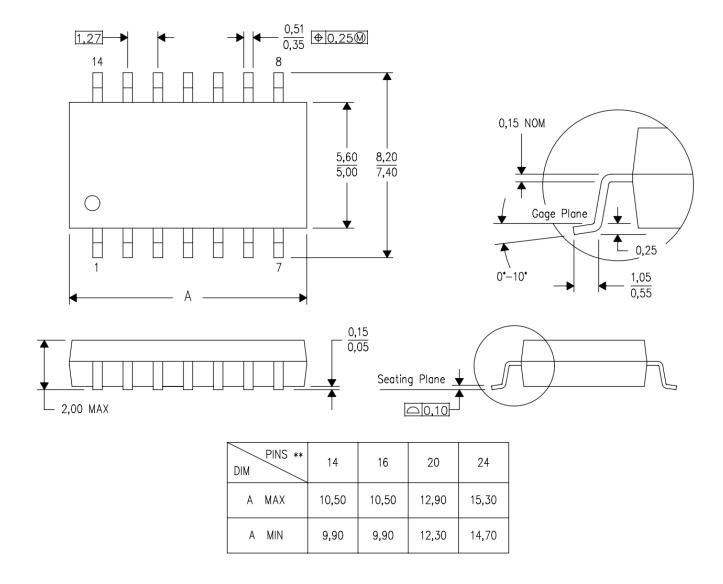
Package Outline Dimension

SOT23-5

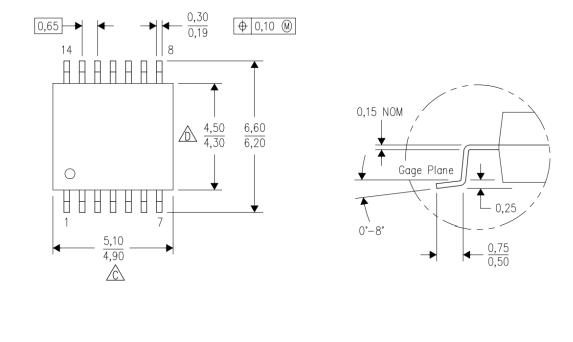



- 1.All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only.
- 2. This drawing is subject to change without notice.
- 3.Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.25 mm per side.
- 4. Support pin may differ or may not be present.

SOP8


- 1.All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only.
- 2. This drawing is subject to change without notice.
- 3.Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.25 mm per side.
- 4. Support pin may differ or may not be present.

MSOP8


- 1.All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only.
- 2. This drawing is subject to change without notice.
- 3.Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.25 mm per side.
- 4. Support pin may differ or may not be present.

SOP14

- 1.All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only.
- 2. This drawing is subject to change without notice.
- 3.Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.25 mm per side.
- 4. Support pin may differ or may not be present.

TSSOP14

NOTE:

1.All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only.

 $\frac{0,15}{0,05}$

2. This drawing is subject to change without notice.

1,20 MAX

3.Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.25 mm per side.

Seating Plane

0,10

4. Support pin may differ or may not be present.