
Industry-Standard Comparators

Features

- Wide supply range of 2 V to 36 V
- Faster response time of 1.3 µsec
- Differential input voltage range equal to maximumrated supply voltage: ±36 V
- Large Voltage Gain: 100dB (Typical)
- Low Input Bias Current: 25nA (Typical)
- Low Input Offset Voltage: 2mV (Typical)
- Common-mode input voltage range includes ground, enabling direct sensing near ground
- Open Collector Output compatibility AECQ-100

Applications

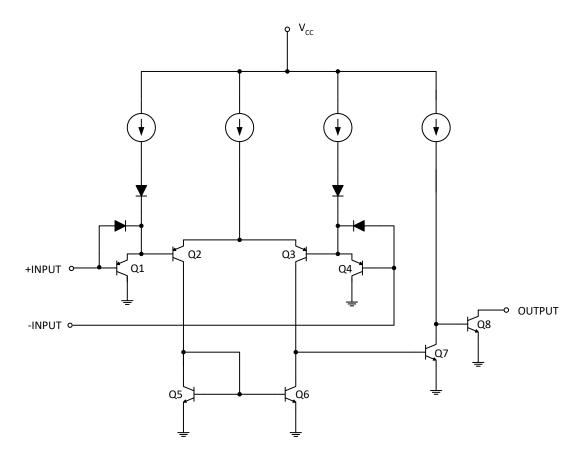
- Vacuum robot
- Single phase UPS
- Server PSU
- Cordless power tool
- Wireless infrastructure
- Applicances
- Building automation
- Factory automation control
- Motor drives
- Infotainment and cluster

Typical Applicaiton

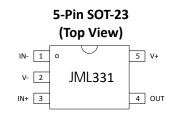
General Description

These amplifiers are available in industry standard packages. TheJML331,JML339,JML393,JML2901/and 903 series comparators consist of four and two independent precision voltage comparators with very low input offset voltage specification. They are designed to operate from a single power supply over a wide range of voltages; however operation from split power supplies is also possible. They offer low power supply current independent of the magnitude of the power supply voltage. These comparators family are designed to directly interface with TTL and CMOS. When operating from both plus and minus power supplies, the comparators will directly interface with MOS logic where their low power drain is a distinct advantage over standard comparators.

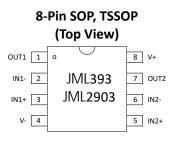
These amplifiers are available in industry standard packages.

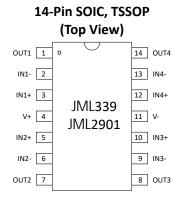

Device Information ¹²				
PART NUMBER	PACKAGE	BODY SIZE(NOM)		
JML331	SOT23 (5)	2.90 mm × 1.60 mm		
JML393	SOP (8)	3.91 mm × 4.90 mm		
	MSOP (8)	3.00 mm × 3.00 mm		
JML2903	SOP (8)	3.91 mm × 4.90 mm		
JIVIL2905	MSOP (8)	3.00 mm × 3.00 mm		
JML339	SOP (14)	8.65mm × 3.91mm		
31012333	TSSOP (14)	5.00mm × 4.40mm		
JML2901	SOP (14)	8.65mm × 3.91mm		
JIVILZJUI	TSSOP (14)	5.00mm × 4.40mm		

Device Information¹²


¹ For all available packages,see the orderable addendum at the end of the data sheet.

² Package is for preview only.


Functional Block Diagram


Pin Configuration and Functions

Р	IN	I/O	DESCRIPTION			
NAME NO.		1/0	DESCRIPTION			
IN+	3	I	Noninverting input			
IN-	1	I	Inverting input			
OUT	4	0	Out			
V+	5	_	Positive (highest) power supply			
V- 2 —		—	Negative (low) supply or ground (for single-supply operation)			

	PIN	I/O	DESCRIPTION	
NAME	NO.	1,0	DESCRIPTION	
IN1–	2	I	Inverting input, channel 1	
IN1+	3	I	Noninverting input, channel 1	
IN2-	6	I	I Inverting input, channel 2	
IN2+	5	I	I Noninverting input, channel 2	
OUT1	1	0	Output, channel 1	
OUT2	7	0	Output, channel 2	
V+	8	_	 Positive (highest) power supply 	
V-	4	_	Negative (low) supply or ground (for single-supply operation)	

	PIN	I/O	DESCRIPTION
NAME	NO.	//U	DESCRIPTION
IN1-	2	I	Inverting input, channel 1
IN1+	3	I	Noninverting input, channel 1
IN2-	6	I	Inverting input, channel 2
IN2+	5	I	Noninverting input, channel 2
IN3–	9	I	Inverting input, channel 3
IN3+	10	I	Noninverting input, channel 3
IN4–	13	I	Inverting input, channel 4
IN4+	12	I	Noninverting input, channel 4
OUT1	1	0	Output, channel 1
OUT2	7	0	Output, channel 2
OUT3	8	0	Output, channel 3
OUT4	14	0	Output, channel 4
V+	4	_	Positive (highest) power supply
V-	11	_	Negative (low) supply or ground (for single-supply operation)

Specifications

Absolute Maximum Ratings

			MIN	MAX	UNIT
Supply voltage [(V+)	- (V-)]		0	40	V
Signal input pins Vo	Voltago	Common-mode	-0.3	40	V
	Voltage	Differential		40	V
Temperature	Specified, T _A	LM331,LM339,LM393	-40	85	- °C
	Specified, 1 _A	LM2901, LM2903	-40	125	
	Junction, T_J			150	C
	Storage, T _{stg}		-65	150	

Over operating ambient temperature (unless otherwise noted)¹

¹ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

ESD Ratings

		VALUE	UNIT
All packages			
V _{ESD} Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ¹	±500	V
	Charged-device model (CDM), per JEDEC specification JESD22-C101 ¹	±1000	v

¹ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process

² JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Thermal Information

THERMAL METRIC	SOP-8	TSSOP-8	SOP-14	TSSOP-14	UNIT
$R_{ hetaJA}$ Junction-to-ambient thermal resistance	124.7	171	106.9	135.8	°C/W
$R_{\theta JC(top)}$ Junction-to-case (top) thermal resistance	67	69	64	64	C/ VV

Recommended Operating Conditions

Over operating ambient temperature (unless otherwise noted)

			MIN	MAX	UNIT
Vs	Supply voltage (V _S = [V+] – [V–])		3	36	V
V _{CM}	Common-mode voltage		V–	(V+)-1.5	V
T _A	Operating ambient temperature	LM331,LM339, LM393	-40	85	°C
		LM2901,LM2903	-40	125	

For V_S (Total Supply Voltage) = (V+) – (V–) = 5V	$^{\prime}$ - 36V at T _A = 25°C (unless otherwise noted)
---	---

PARAMETER		TEST CONDITIONS	MIN	ТҮР	MAX	UNIT	
OFFSET	VOLTAGE	· · · · · ·		I			
V	input officit voltage	$V_{\rm S}$ = 5V to 30V, $V_{\rm O}$ = 1.4V		2	5		
V _{OS}	input offset voltage	$V_{S} = 5 V \text{ to } 30V,$ $V_{O} = 1.4V, T_{A} = -40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}$			7	mV	
INPUT V	OLTAGE RANGE						
	Common-mode voltage range	V _S = 5V to 36V,	V–		V+ -1.5		
V_{CM}	Common-mode voltage range	$V_{S} = 5V \text{ to } 36V, T_{A} = -40^{\circ}C \text{ to } 85^{\circ}C$	V–		V+ - 2	V	
INPUT B	IAS CURRENT						
1	Input bias current	V _{CM} =0		-25	-200	nA	
Ι _Β	input bias current	V _{CM} =0,T _A =-40°C to 85°C			-400	ΠA	
1	Input offset current	V _{CM} = 0		5	50	54	
l _{OS}	input onset current	V _{CM} =0,T _A = -40°C to 85°C			100	nA	
RESPON	SE TIME						
		R_L connected to 5 V through 5.1 kΩ, C_L = 15 pF, TTL-level input step		0.3			
t _{response}	t _{response} Response time	R_L connected to 5 V through 5.1 kΩ, 100-mV input step with 5 mV overdrive		1.3		μs	
VOLTAG	EGAIN						
A_{VD}	Large-signal differential- voltage gain	V_{S} = 15V, V_{O} = 1V to 11V, R_{L} > 15K Ω	50	200		V/mV	
OUTPUT							
M		I _{OL} = 4 mA,V _{ID} = -1 V		200	400	mV	
V _{OL}	Low-level output voltage	$I_{OL} = 4 \text{ mA}, V_{ID} = -1 \text{ V}, T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$			700	IIIV	
1.	High lovel output current	V _{OH} = 5 V, V _{ID} = 1 V	0.1	50		nA	
I _{OH}	High-level output current	V_{OH} = 30 V, V_{ID} = 1 V, T_A = -40°C to 85°C			1	μA	
I _{OL}	Low-level output current	V _{OL} = 1.5 V, V _{ID} = -1 V	6	16		mA	
POWER	SUPPLY						
		V _S = 5 V		400	1000		
	Quiescent aurrent	$V_{\rm S} = 5 \text{ V}, T_{\rm A} = -40^{\circ} \text{C} \text{ to } 85^{\circ} \text{C}$			2000		
l _Q	Quiescent current	V _S = 30 V		500	1700	μA	
		V _S = 30 V,T _A = -40°C to 85°C			3000		

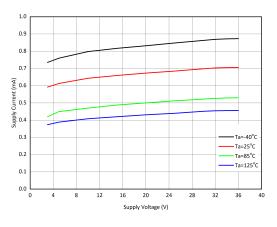
For V_S (Total Supply Voltage) = (V+) – (V–) = 5V	$^{\prime}$ - 36V at T _A = 25°C (unless otherwise noted)
---	---

PARAMETER		TEST CONDITIONS	MIN	ТҮР	МАХ	UNIT	
OFFSET	VOLTAGE	· · · · · ·		1	1		
Maa	input offset voltage	$V_{\rm S}$ = 5V to 30V, $V_{\rm O}$ = 1.4V		2	5	m\/	
V _{OS}	input onset voltage	$V_{S} = 5 V \text{ to } 30V,$ $V_{O} = 1.4V, T_{A} = -40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}$			7	mV	
INPUT V	OLTAGE RANGE						
	Common-mode voltage range	V _S = 5V to 36V,	V–		V+ -1.5		
V_{CM}	Common-mode voltage range	$V_{S} = 5V \text{ to } 36V, T_{A} = -40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}$	V–		V+ - 2	V	
INPUT B	IAS CURRENT						
I _B	Input bias current	V _{CM} =0		-25	-200	nA	
ιB	input bias current	V _{CM} =0,T _A =-40°C to 85°C			-400	IIA	
1	Input offset current	V _{CM} = 0		5	50		
I _{OS}	input onset current	V _{CM} =0,T _A =-40°C to 85°C			100	nA	
RESPON	SE TIME						
		R_L connected to 5 V through 5.1 kΩ, C_L = 15 pF, TTL-level input step		0.3			
t _{response}	t _{response} Response time	R_L connected to 5 V through 5.1 k Ω , 100-mV input step with 5 mV overdrive		1.3		μs	
VOLTAG	EGAIN						
A_{VD}	Large-signal differential- voltage gain	V_{S} = 15V, V_{O} = 1V to 11V, R_{L} > 15K Ω	50	200		V/mV	
OUTPUT							
M		I _{OL} = 4 mA,V _{ID} = -1 V		200	400	mV	
V _{OL}	Low-level output voltage	$I_{OL} = 4 \text{ mA}, V_{ID} = -1 \text{ V}, T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$			700	IIIV	
1.	High lovel output current	V _{OH} = 5 V, V _{ID} = 1 V	0.1	50		nA	
I _{OH}	High-level output current	V_{OH} = 30 V, V_{ID} = 1 V, T_A = -40°C to 85°C			1	μA	
I _{OL}	Low-level output current	V _{OL} = 1.5 V, V _{ID} = -1 V	6	16		mA	
POWER	SUPPLY						
		V _S = 5 V		850	1990		
1.	Quiescent current	$V_{\rm S} = 5 \text{ V}, T_{\rm A} = -40^{\circ} \text{C to } 85^{\circ} \text{C}$			2990		
l _Q	Quiescent current	V _S = 30 V		1150	2490	μA	
		V _S = 30 V,T _A = -40°C to 85°C			3490		

For V _S (Total Supply Voltage)	= (V+) – (V–) = 5V - 36V at	$T_A = 25^{\circ}C$ (unless otherwise noted)
---	-----------------------------	--

PARAMETER		TEST CONDITIONS	MIN	ТҮР	MAX	UNIT	
OFFSET	VOLTAGE						
V		$V_{\rm S}$ = 5V to 30V, $V_{\rm O}$ = 1.4V		2	5		
V _{OS}	input offset voltage	$V_{S} = 5 V \text{ to } 30V,$ $V_{O} = 1.4V, T_{A} = -40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}$		7		- mV	
INPUT V	OLTAGE RANGE						
V _{CM}	Common-mode voltage range	V _S = 5V to 36V,	V–	V+ -1.5		V	
V CM	Common-mode voltage range	$V_{\rm S} = 5V$ to 36V, $T_{\rm A} = -40^{\circ}$ C to 85°C	V–		V+ - 2	v	
INPUT B	IAS CURRENT						
		V _{CM} =0		-25	-200	54	
Ι _Β	Input bias current	V _{CM} =0,T _A = -40°C to 85°C			-400	nA	
1	Input offcot current	V _{CM} = 0		5	50	^	
I _{OS}	Input offset current	V _{CM} =0,T _A = -40°C to 85°C			100	nA	
RESPON	SE TIME	· · · · · · · · · · · · · · · · · · ·					
		R_L connected to 5 V through 5.1 kΩ, C_L = 15 pF, TTL-level input step		0.3		μs	
t _{response}	Response time	R _L connected to 5 V through 5.1 kΩ, 100-mV input step with 5 mV overdrive		1.3			
VOLTAG	E GAIN						
A_{VD}	Large-signal differential- voltage gain	V_{S} = 15V, V_{O} = 1V to 11V, R_{L} > 15K Ω	50	200		V/mV	
OUTPUT							
V	Low-level output voltage	I _{OL} = 4 mA,V _{ID} = -1 V		200	400		
V _{OL}		$I_{OL} = 4 \text{ mA}, V_{ID} = -1 \text{ V}, T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$			700	mV	
	High-level output current	V _{OH} = 5 V, V _{ID} = 1 V	0.1	50		nA	
I _{OH}		V_{OH} = 30 V, V_{ID} = 1 V, T_A = -40°C to 85°C			1	μA	
I _{OL}	Low-level output current	V _{OL} = 1.5 V, V _{ID} = -1 V	6	16		mA	
POWER	SUPPLY						
	Quiescent current	V _S = 5 V		620	1000		
		$V_{\rm S} = 5 \text{ V}, T_{\rm A} = -40^{\circ} \text{C to } 85^{\circ} \text{C}$			1990		
l _Q		V _S = 30 V		700	1750	μA	
		V _S = 30 V,T _A = -40°C to 85°C			2990		

For V_S(Total Supply Voltage) = (V+) – (V–) = 5V - 36V at T_A = 25°C (unless otherwise noted)


PARAMETER		TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
OFFSET	VOLTAGE					
\ <i>\</i>		$V_{\rm S}$ = 5V to 30V, $V_{\rm O}$ = 1.4V		2	7	
V _{OS}	input offset voltage	$V_{S} = 5 V \text{ to } 30V,$ $V_{O} = 1.4V, T_{A} = -40^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}$			15	mV
INPUT V	OLTAGE RANGE					
V	Common-mode voltage range	V _S = 5V to 36V,	V–		V+ -1.5	
V _{см}	Common-mode voltage range	$V_{\rm S}$ = 5V to 36V, $T_{\rm A}$ = -40°C to 125°C	V–		V+ - 2	V
INPUT B	IAS CURRENT					
1	Input bias current	V _{CM} =0		-25	-250	54
I _B		V _{CM} =0,T _A = -40°C to 125°C			-400	nA
		V _{CM} = 0		5	50	~ ^
I _{OS}	Input offset current	V _{CM} =0,T _A = -40°C to 125°C		200		nA
RESPON	SE TIME			1		
		R_L connected to 5 V through 5.1 kΩ, C_L = 15 pF, TTL-level input step		0.3		
t _{response}	Response time	R _L connected to 5 V through 5.1 kΩ, 100-mV input step with 5 mV overdrive		1.3		μs
VOLTAG	E GAIN					
A_{VD}	Large-signal differential- voltage gain	V_{S} = 15V, V_{O} = 1V to 11V, R_{L} > 15K Ω	50	200		V/mV
OUTPUT				1		
M	Low-level output voltage	I _{OL} = 4 mA,V _{ID} = -1 V		200	400	
V _{OL}		$I_{OL} = 4 \text{ mA}, V_{ID} = -1 \text{ V}, T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$			700	mV
	High-level output current	V _{OH} = 5 V, V _{ID} = 1 V	0.1	50		nA
I _{OH}		V_{OH} = 30 V, V_{ID} = 1 V, T_A = -40°C to 85°C			1	μA
I _{OL}	Low-level output current	V _{OL} = 1.5 V, V _{ID} = -1 V	6	16		mA
POWER	SUPPLY	· · · · · · · · · · · · · · · · · · ·		1		
	Quiescent current	V _S = 5 V		850	1990	
		V _S = 5 V,T _A = -40°C to 125°C			2990	
l _Q		V _S = 30 V		1150	2490	μΑ
		V _S = 30 V,T _A = -40°C to 125°C			3490	

For V_S(Total Supply Voltage) = (V+) – (V–) = 5V - 36V at T_A = 25°C (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
OFFSET	VOLTAGE					
\ <i>\</i>		$V_{\rm S}$ = 5V to 30V, $V_{\rm O}$ = 1.4V		2	7	
V _{OS}	input offset voltage	$V_{S} = 5 V \text{ to } 30V,$ $V_{O} = 1.4V, T_{A} = -40^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}$			15	mV
INPUT V	OLTAGE RANGE					
\/	Common-mode voltage range	V _S = 5V to 36V,	V–		V+ -1.5	v
V _{CM}	Common-mode voltage range	$V_{\rm S}$ = 5V to 36V, $T_{\rm A}$ = -40°C to 125°C	V–		V+ - 2	
INPUT B	IAS CURRENT					
		V _{CM} =0		-25	-250	
Ι _Β	Input bias current	V _{CM} =0,T _A = -40°C to 125°C			-400	nA
	logent offerst surgest	V _{CM} = 0		5	50	nA
l _{OS}	Input offset current	V _{CM} =0,T _A = -40°C to 125°C			200	
RESPON	SETIME	· · · · · · · · · · · · · · · · · · ·				
		R_L connected to 5 V through 5.1 kΩ, C_L = 15 pF, TTL-level input step		0.3		
t _{response}	Response time	R _L connected to 5 V through 5.1 kΩ, 100-mV input step with 5 mV overdrive		1.3		μs
VOLTAG	E GAIN					
A_{VD}	Large-signal differential- voltage gain	V_{S} = 15V, V_{O} = 1V to 11V, R_{L} > 15K Ω	50	200		V/mV
OUTPUT						
V/	Low-level output voltage	I _{OL} = 4 mA,V _{ID} = -1 V		200	400	
V _{OL}		$I_{OL} = 4 \text{ mA}, V_{ID} = -1 \text{ V}, T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$			700	mV
	High-level output current	V _{OH} = 5 V, V _{ID} = 1 V	0.1	50		nA
I _{OH}		V_{OH} = 30 V, V_{ID} = 1 V, T_A = -40°C to 85°C			1	μA
I _{OL}	Low-level output current	V _{OL} = 1.5 V, V _{ID} = -1 V	6	16		mA
POWER	SUPPLY	· · · · · · · · · · · · · · · · · · ·				
	Quiescent current	V _S = 5 V		400	1000	
		$V_{\rm S} = 5 \text{ V}, T_{\rm A} = -40^{\circ} \text{C} \text{ to } 125^{\circ} \text{C}$			1990	
l _Q		V _S = 30 V		650	1750	μA
		V _S = 30 V,T _A = -40°C to 125°C			2990	

Typical Characteristics

at T_A = 25°C, V_S = 5 V, R_{PULLUP} = 5.1k Ω , and V_{OUT} = 0 V (unless otherwise noted)

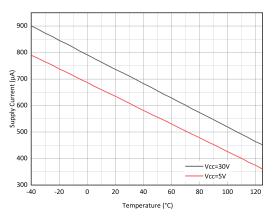


Figure 3: Supply Current vs. Temperature (JML2903 and LM393)

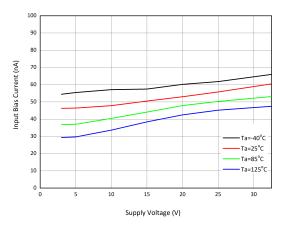


Figure 5: Input Bias Current vs. Supply Voltage

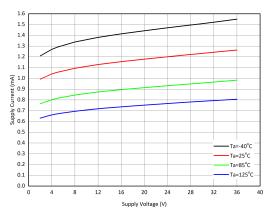


Figure 2: Supply Current vs. Power Supply (JML2901 and LM339)

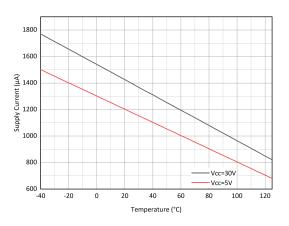


Figure 4: Supply Current vs. Temperature (JML2901 and LM339)

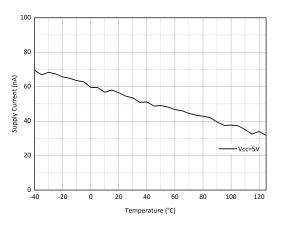
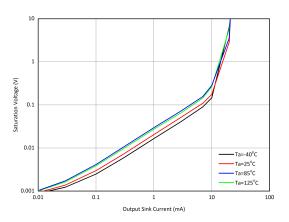



Figure 6: Input Bias Current vs. Temperature

Typical Characteristics (continued)

at T_A = 25°C, V_S = 5 V, R_{PULLUP} = 5.1k Ω , and V_{OUT} = 0 V (unless otherwise noted)

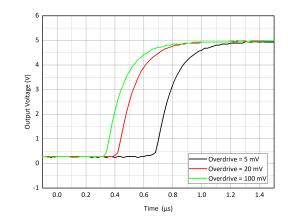
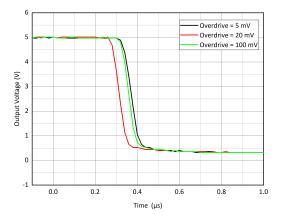
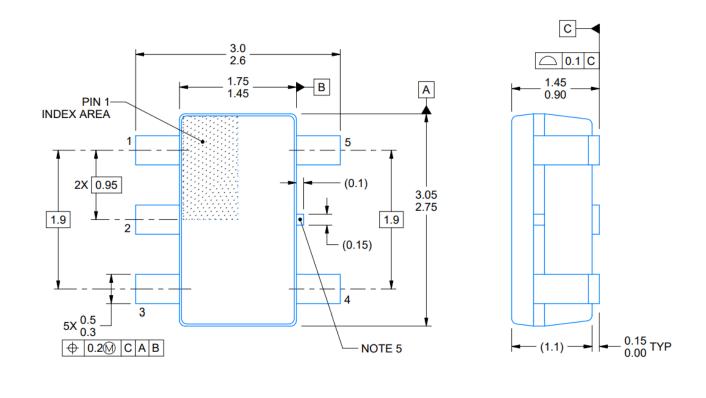
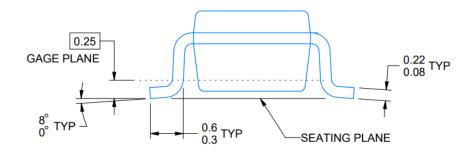



Figure 7: Output Sink Current vs. Saturation Voltage Figure 8: Response Time for Various Overdrives Positive Transition

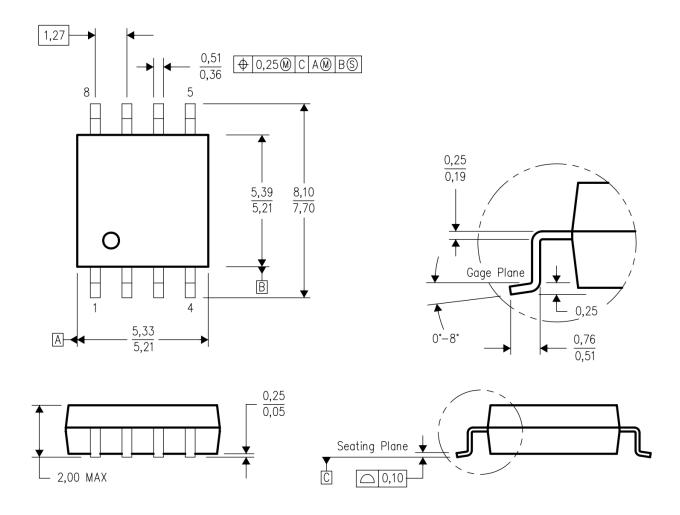

Figure 9: Response Time for Various Overdrives Negative Transition


Packaging Infromation

Orderable Device	Status	Package Type	Pins	Package Qty	Eco Plan	Op Temp(°C)	Marking
JML331DBVR	ACTIVE	SOT-23	5	4000	RoHS Green	-40 to 85	331
JML393DGKR	ACTIVE	MSOP	8	4000	RoHS Green	-40 to 85	393DGK
JML393DR	ACTIVE	SOP	8	4000	RoHS Green	-40 to 85	393D
JML2903DGKR	ACTIVE	MSOP	8	4000	RoHS Green	-40 to 125	2903DGK
JML2903DR	ACTIVE	SOP	8	4000	RoHS Green	-40 to 125	2903D
JML339DR	ACTIVE	SOP	14	2500	RoHS Green	-40 to 85	339D
JML339PWR	ACTIVE	TSSOP	14	2500	RoHS Green	-40 to 85	339PW
JML2901DR	ACTIVE	SOP	14	2500	RoHS Green	-40 to 125	2901D
JML2901PWR	ACTIVE	TSSOP	14	2500	RoHS Green	-40 to 125	2901PW

Package Outline Dimension

SOT23-5

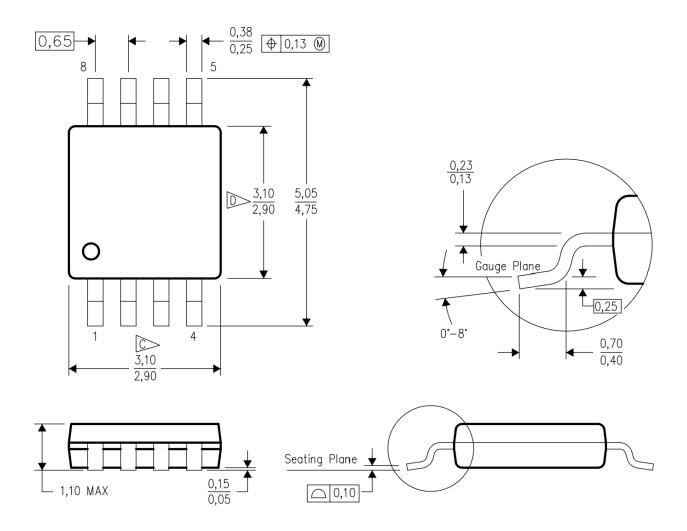

NOTE:

1.All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only.

2. This drawing is subject to change without notice.

3.Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.25 mm per side.

SOP8

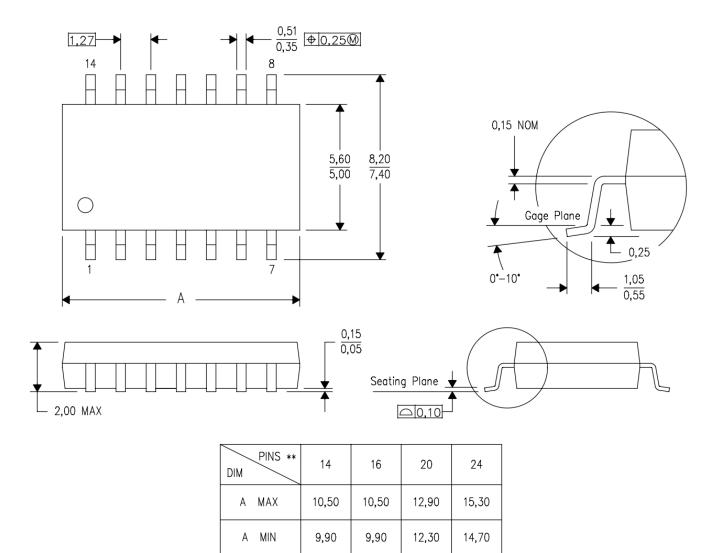

NOTE:

1.All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only.

2. This drawing is subject to change without notice.

3.Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.25 mm per side.

MSOP8


NOTE:

1.All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only.

2. This drawing is subject to change without notice.

3.Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.25 mm per side.

SOP14

NOTE:

1.All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only.

2. This drawing is subject to change without notice.

3.Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.25 mm per side.

TSSOP14

NOTE:

1.All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only.

2. This drawing is subject to change without notice.

3.Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.25 mm per side.